1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
use na::{DVector, RealField, Unit};
use std::ops::Range;

use crate::joint::JointConstraint;
use crate::math::{AngularVector, Point, Vector, DIM};
use crate::object::{BodyHandle, BodyPartHandle, BodySet};
use crate::solver::helper;
use crate::solver::{
    GenericNonlinearConstraint, IntegrationParameters, LinearConstraints,
    NonlinearConstraintGenerator,
};

/// A constraint that removes all but two relative rotations along distinct axii.
pub struct UniversalConstraint<N: RealField, Handle: BodyHandle> {
    b1: BodyPartHandle<Handle>,
    b2: BodyPartHandle<Handle>,
    anchor1: Point<N>,
    anchor2: Point<N>,
    axis1: Unit<AngularVector<N>>,
    axis2: Unit<AngularVector<N>>,
    angle: N,
    lin_impulses: Vector<N>,
    ang_impulse: N,
    break_force_squared: N,
    break_torque_squared: N,
    broken: bool,
    bilateral_ground_rng: Range<usize>,
    bilateral_rng: Range<usize>,
}

impl<N: RealField, Handle: BodyHandle> UniversalConstraint<N, Handle> {
    /// Create a new universal constraint that ensure the angle between `axis1` and `axis2` is always equal to `angle`.
    ///
    /// All anchors and axii are expressed in the local coordinate systems of the corresponding body parts.
    pub fn new(
        b1: BodyPartHandle<Handle>,
        b2: BodyPartHandle<Handle>,
        anchor1: Point<N>,
        axis1: Unit<AngularVector<N>>,
        anchor2: Point<N>,
        axis2: Unit<AngularVector<N>>,
        angle: N,
    ) -> Self {
        UniversalConstraint {
            b1,
            b2,
            anchor1,
            anchor2,
            axis1,
            axis2,
            angle,
            lin_impulses: Vector::zeros(),
            ang_impulse: N::zero(),
            break_force_squared: N::max_value(),
            break_torque_squared: N::max_value(),
            broken: false,
            bilateral_ground_rng: 0..0,
            bilateral_rng: 0..0,
        }
    }

    /// The maximum force this joint can absorb before breaking.
    pub fn set_break_force(&mut self, break_force: N) {
        self.break_force_squared = break_force * break_force;
    }

    /// The maximum torque this joint can absorb before breaking.
    pub fn set_break_torque(&mut self, break_torque: N) {
        self.break_torque_squared = break_torque * break_torque;
    }
}

impl<N: RealField, Handle: BodyHandle> JointConstraint<N, Handle>
    for UniversalConstraint<N, Handle>
{
    fn is_broken(&self) -> bool {
        self.broken
    }

    fn num_velocity_constraints(&self) -> usize {
        4
    }

    fn anchors(&self) -> (BodyPartHandle<Handle>, BodyPartHandle<Handle>) {
        (self.b1, self.b2)
    }

    fn velocity_constraints(
        &mut self,
        _: &IntegrationParameters<N>,
        bodies: &dyn BodySet<N, Handle = Handle>,
        ext_vels: &DVector<N>,
        ground_j_id: &mut usize,
        j_id: &mut usize,
        jacobians: &mut [N],
        constraints: &mut LinearConstraints<N, usize>,
    ) {
        let body1 = try_ret!(bodies.get(self.b1.0));
        let body2 = try_ret!(bodies.get(self.b2.0));
        let part1 = try_ret!(body1.part(self.b1.1));
        let part2 = try_ret!(body2.part(self.b2.1));

        /*
         *
         * Joint constraints.
         *
         */
        let pos1 = body1.position_at_material_point(part1, &self.anchor1);
        let pos2 = body2.position_at_material_point(part2, &self.anchor2);

        let anchor1 = Point::from(pos1.translation.vector);
        let anchor2 = Point::from(pos2.translation.vector);

        let assembly_id1 = body1.companion_id();
        let assembly_id2 = body2.companion_id();

        let first_bilateral_ground = constraints.bilateral_ground.len();
        let first_bilateral = constraints.bilateral.len();

        helper::cancel_relative_linear_velocity(
            body1,
            part1,
            self.b1,
            body2,
            part2,
            self.b2,
            assembly_id1,
            assembly_id2,
            &anchor1,
            &anchor2,
            ext_vels,
            &self.lin_impulses,
            0,
            ground_j_id,
            j_id,
            jacobians,
            constraints,
        );

        let axis1 = pos1 * self.axis1;
        let axis2 = pos2 * self.axis2;
        if let Some(orth) = Unit::try_new(axis1.cross(&*axis2), N::default_epsilon()) {
            helper::cancel_relative_angular_velocity_wrt_axis(
                body1,
                part1,
                self.b1,
                body2,
                part2,
                self.b2,
                assembly_id1,
                assembly_id2,
                &anchor1,
                &anchor2,
                &orth,
                ext_vels,
                self.ang_impulse,
                DIM,
                ground_j_id,
                j_id,
                jacobians,
                constraints,
            );
        }

        /*
         *
         * Limit constraints.
         *
         */

        self.bilateral_ground_rng = first_bilateral_ground..constraints.bilateral_ground.len();
        self.bilateral_rng = first_bilateral..constraints.bilateral.len();
    }

    fn cache_impulses(&mut self, constraints: &LinearConstraints<N, usize>, inv_dt: N) {
        for c in &constraints.bilateral_ground[self.bilateral_ground_rng.clone()] {
            if c.impulse_id < DIM {
                self.lin_impulses[c.impulse_id] = c.impulse;
            } else {
                self.ang_impulse = c.impulse;
            }
        }

        for c in &constraints.bilateral[self.bilateral_rng.clone()] {
            if c.impulse_id < DIM {
                self.lin_impulses[c.impulse_id] = c.impulse;
            } else {
                self.ang_impulse = c.impulse;
            }
        }

        let inv_dt2 = inv_dt * inv_dt;

        if self.lin_impulses.norm_squared() * inv_dt2 > self.break_force_squared
            || self.ang_impulse * self.ang_impulse * inv_dt2 > self.break_torque_squared
        {
            self.broken = true;
        }
    }
}

impl<N: RealField, Handle: BodyHandle> NonlinearConstraintGenerator<N, Handle>
    for UniversalConstraint<N, Handle>
{
    fn num_position_constraints(&self, bodies: &dyn BodySet<N, Handle = Handle>) -> usize {
        // FIXME: calling this at each iteration of the non-linear resolution is costly.
        if self.is_active(bodies) {
            2
        } else {
            0
        }
    }

    fn position_constraint(
        &self,
        parameters: &IntegrationParameters<N>,
        i: usize,
        bodies: &mut dyn BodySet<N, Handle = Handle>,
        jacobians: &mut [N],
    ) -> Option<GenericNonlinearConstraint<N, Handle>> {
        let body1 = bodies.get(self.b1.0)?;
        let body2 = bodies.get(self.b2.0)?;
        let part1 = body1.part(self.b1.1)?;
        let part2 = body2.part(self.b2.1)?;

        let pos1 = body1.position_at_material_point(part1, &self.anchor1);
        let pos2 = body2.position_at_material_point(part2, &self.anchor2);

        let anchor1 = Point::from(pos1.translation.vector);
        let anchor2 = Point::from(pos2.translation.vector);

        if i == 0 {
            return helper::cancel_relative_translation(
                parameters, body1, part1, self.b1, body2, part2, self.b2, &anchor1, &anchor2,
                jacobians,
            );
        }

        if i == 1 {
            let axis1 = pos1 * self.axis1;
            let axis2 = pos2 * self.axis2;

            return helper::restore_angle_between_axis(
                parameters, body1, part1, self.b1, body2, part2, self.b2, &anchor1, &anchor2,
                &axis1, &axis2, self.angle, jacobians,
            );
        }

        return None;
    }
}