1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
use na::{DVector, RealField, Unit};
use std::ops::Range;

use crate::joint::JointConstraint;
use crate::math::{AngularVector, Point, Vector, DIM, SPATIAL_DIM};
use crate::object::{BodyHandle, BodyPartHandle, BodySet};
use crate::solver::helper;
use crate::solver::{
    GenericNonlinearConstraint, IntegrationParameters, LinearConstraints,
    NonlinearConstraintGenerator,
};

/// A constraint that removes all degrees of freedom (of one body part relative to a second one) except one translation along an axis and one rotation along the same axis.
pub struct CylindricalConstraint<N: RealField, Handle: BodyHandle> {
    b1: BodyPartHandle<Handle>,
    b2: BodyPartHandle<Handle>,
    anchor1: Point<N>,
    anchor2: Point<N>,
    axis1: Unit<Vector<N>>,
    axis2: Unit<Vector<N>>,
    lin_impulses: Vector<N>,
    ang_impulses: AngularVector<N>,
    break_force_squared: N,
    break_torque_squared: N,
    broken: bool,
    bilateral_ground_rng: Range<usize>,
    bilateral_rng: Range<usize>,
    // min_offset: Option<N>,
    // max_offset: Option<N>,
}

impl<N: RealField, Handle: BodyHandle> CylindricalConstraint<N, Handle> {
    /// Creates a cartesian constraint between two body parts.
    ///
    /// This will ensure `axis1` and `axis2` always coincide. All the axis and anchors
    /// are provided on the local space of the corresponding body parts.
    pub fn new(
        b1: BodyPartHandle<Handle>,
        b2: BodyPartHandle<Handle>,
        anchor1: Point<N>,
        axis1: Unit<Vector<N>>,
        anchor2: Point<N>,
        axis2: Unit<Vector<N>>,
    ) -> Self {
        // let min_offset = None;
        // let max_offset = None;

        CylindricalConstraint {
            b1,
            b2,
            anchor1,
            anchor2,
            axis1,
            axis2,
            lin_impulses: Vector::zeros(),
            ang_impulses: AngularVector::zeros(),
            break_force_squared: N::max_value(),
            break_torque_squared: N::max_value(),
            broken: false,
            bilateral_ground_rng: 0..0,
            bilateral_rng: 0..0,
            // min_offset,
            // max_offset,
        }
    }

    /// The maximum force this joint can absorb before breaking.
    pub fn set_break_force(&mut self, break_force: N) {
        self.break_force_squared = break_force * break_force;
    }

    /// The maximum torque this joint can absorb before breaking.
    pub fn set_break_torque(&mut self, break_torque: N) {
        self.break_torque_squared = break_torque * break_torque;
    }

    // pub fn min_offset(&self) -> Option<N> {
    //     self.min_offset
    // }

    // pub fn max_offset(&self) -> Option<N> {
    //     self.max_offset
    // }

    // pub fn disable_min_offset(&mut self) {
    //     self.min_offset = None;
    // }

    // pub fn disable_max_offset(&mut self) {
    //     self.max_offset = None;
    // }

    // pub fn enable_min_offset(&mut self, limit: N) {
    //     self.min_offset = Some(limit);
    //     self.assert_limits();
    // }

    // pub fn enable_max_offset(&mut self, limit: N) {
    //     self.max_offset = Some(limit);
    //     self.assert_limits();
    // }

    // fn assert_limits(&self) {
    //     if let (Some(min_offset), Some(max_offset)) = (self.min_offset, self.max_offset) {
    //         assert!(
    //             min_offset <= max_offset,
    //             "Cylindrical constraint limits: the min angle must be larger than (or equal to) the max angle.");
    //     }
    // }
}

impl<N: RealField, Handle: BodyHandle> JointConstraint<N, Handle>
    for CylindricalConstraint<N, Handle>
{
    fn is_broken(&self) -> bool {
        self.broken
    }

    fn num_velocity_constraints(&self) -> usize {
        SPATIAL_DIM - 2
    }

    fn anchors(&self) -> (BodyPartHandle<Handle>, BodyPartHandle<Handle>) {
        (self.b1, self.b2)
    }

    fn velocity_constraints(
        &mut self,
        _: &IntegrationParameters<N>,
        bodies: &dyn BodySet<N, Handle = Handle>,
        ext_vels: &DVector<N>,
        ground_j_id: &mut usize,
        j_id: &mut usize,
        jacobians: &mut [N],
        constraints: &mut LinearConstraints<N, usize>,
    ) {
        let body1 = try_ret!(bodies.get(self.b1.0));
        let body2 = try_ret!(bodies.get(self.b2.0));
        let part1 = try_ret!(body1.part(self.b1.1));
        let part2 = try_ret!(body2.part(self.b2.1));

        /*
         *
         * Joint constraints.
         *
         */
        let pos1 = body1.position_at_material_point(part1, &self.anchor1);
        let pos2 = body2.position_at_material_point(part2, &self.anchor2);

        let anchor1 = Point::from(pos1.translation.vector);
        let anchor2 = Point::from(pos2.translation.vector);

        let assembly_id1 = body1.companion_id();
        let assembly_id2 = body2.companion_id();

        let first_bilateral_ground = constraints.bilateral_ground.len();
        let first_bilateral = constraints.bilateral.len();

        let axis1 = pos1 * self.axis1;

        helper::restrict_relative_linear_velocity_to_axis(
            body1,
            part1,
            self.b1,
            body2,
            part2,
            self.b2,
            assembly_id1,
            assembly_id2,
            &anchor1,
            &anchor2,
            &axis1,
            ext_vels,
            self.lin_impulses.as_slice(),
            0,
            ground_j_id,
            j_id,
            jacobians,
            constraints,
        );

        helper::restrict_relative_angular_velocity_to_axis(
            body1,
            part1,
            self.b1,
            body2,
            part2,
            self.b2,
            assembly_id1,
            assembly_id2,
            &axis1,
            &anchor1,
            &anchor2,
            ext_vels,
            self.ang_impulses.as_slice(),
            DIM - 1,
            ground_j_id,
            j_id,
            jacobians,
            constraints,
        );

        /*
         *
         * Limit constraints.
         *
         */

        self.bilateral_ground_rng = first_bilateral_ground..constraints.bilateral_ground.len();
        self.bilateral_rng = first_bilateral..constraints.bilateral.len();
    }

    fn cache_impulses(&mut self, constraints: &LinearConstraints<N, usize>, inv_dt: N) {
        for c in &constraints.bilateral_ground[self.bilateral_ground_rng.clone()] {
            if c.impulse_id < DIM {
                self.lin_impulses[c.impulse_id] = c.impulse;
            } else {
                self.ang_impulses[c.impulse_id - DIM] = c.impulse;
            }
        }

        for c in &constraints.bilateral[self.bilateral_rng.clone()] {
            if c.impulse_id < DIM {
                self.lin_impulses[c.impulse_id] = c.impulse;
            } else {
                self.ang_impulses[c.impulse_id - DIM] = c.impulse;
            }
        }

        let inv_dt2 = inv_dt * inv_dt;

        if self.lin_impulses.norm_squared() * inv_dt2 > self.break_force_squared
            || self.ang_impulses.norm_squared() * inv_dt2 > self.break_torque_squared
        {
            self.broken = true;
        }
    }
}

impl<N: RealField, Handle: BodyHandle> NonlinearConstraintGenerator<N, Handle>
    for CylindricalConstraint<N, Handle>
{
    fn num_position_constraints(&self, bodies: &dyn BodySet<N, Handle = Handle>) -> usize {
        // FIXME: calling this at each iteration of the non-linear resolution is costly.
        if self.is_active(bodies) {
            2
        } else {
            0
        }
    }

    fn position_constraint(
        &self,
        parameters: &IntegrationParameters<N>,
        i: usize,
        bodies: &mut dyn BodySet<N, Handle = Handle>,
        jacobians: &mut [N],
    ) -> Option<GenericNonlinearConstraint<N, Handle>> {
        let body1 = bodies.get(self.b1.0)?;
        let body2 = bodies.get(self.b2.0)?;
        let part1 = body1.part(self.b1.1)?;
        let part2 = body2.part(self.b2.1)?;

        let pos1 = body1.position_at_material_point(part1, &self.anchor1);
        let pos2 = body2.position_at_material_point(part2, &self.anchor2);

        let anchor1 = Point::from(pos1.translation.vector);
        let anchor2 = Point::from(pos2.translation.vector);

        let axis1 = pos1 * self.axis1;
        let axis2 = pos2 * self.axis2;

        if i == 0 {
            return helper::align_axis(
                parameters, body1, part1, self.b1, body2, part2, self.b2, &anchor1, &anchor2,
                &axis1, &axis2, jacobians,
            );
        }

        if i == 1 {
            return helper::project_anchor_to_axis(
                parameters, body1, part1, self.b1, body2, part2, self.b2, &anchor1, &anchor2,
                &axis1, jacobians,
            );
        }

        return None;
    }
}